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ARSTRACT

The aross features of plasma ecuilibrium and dvnarmics in the
ideal maanetohydrodynamics (MHD) model can be understood in terms
of a dvnamical svstem which clesely resemhles the equations for a

deformahle ayroscope.

INTROLCUCTION

In the ideal maanetohydrodynamics (MHD) model, electrically
nrutral plasma convects like an adiabatic fluid that carries an
emhedded maanctic field. Durino convection, induced electrical
currents flow instantaneously to onpose chanae of maanetic flux
throuak each comovina surface. 7The resultant maanetic stresnes
Altor the convective motinn of the rlarcra L oppnsira bendine ~f

maanetic {ield .ines,

ve shall seek motionn in three=dimensional MU for which the
velocity varies lincarly in space. For such flows, time
dependence factorizes oat from all of the fluid variables in the
laaranar representation, The dvnamical svstem which then results
from Hamilton's principle closelv resembles the equations for a

deformable avroscoun,



Reduction to qyroscopic motion of fluid flow with linear
velocity profiles was noted already in 1879 by Greenhill . .r
circulation of a fluid of constant density within an ellipsoidal
cavity. PRefore Greenhill, fluid tlows with linear profiles haAd
also been studied Ly Dirichlet, Dedekind, and Riemann, in
connection with ellipsoidal fiqures of fluid eaquilibrium. The
history and development of the latter topic is given with complete
references by Chandrasekhar (1969), Rotatinag ellipsoidal fluiAd
solutions are also treated in the classical texts on fluid
mechanics by Basset (1RB8) and Lamh (1932).

More recentlv Parker (1957) bas studird the expansion of o
maanetic gas cloud which underaqoes homoaereous dilation with
linear velocity profiles, but which does not rotate or circulate,
Likewise, Dyson (1968) has studied isothermal expansionn and
circulation of an ideal fluid whose velocitv profile is linedar and
whose density profile is of Gaussian shape. Before Dyson,
compressible fluid flows with linear profiles had also heen noted
by Ovsjannikov (195%6). Subsequently Anisimnv and lLysikov (1970)
have found special solutions to Dyson's eauatiors, that involuve

eliiptic inteqrals for y = 5/3 ideal aqas,

In the next section we explain how time dependence factorize:
out for MHD fluid flows with lipear profiles, in the Taorann
representation, We then derive the eaquations of motion fror
Ramilton's principle, and analyz« the result=nt dvpamical nvetes
for the time dependence of the flow,

The results provide an analnay between circalation ot o
maqnetic fluid and anaular momentun of a avroscone, In thiso
analoqy, magnetic stresses produce elastic-like forces within the
fluid which tend to restore hoth the circulatory motion and
expanaion of the fluid., 1In fact the ecauations for MHD with lineoa



velocity profiles separate into two ayroscope eijuations which in
general are coupled co each other by bzth maanetic stresses and
deformations of shape. In the planar case with fixed elliptical
boundary the equations reduce to the equation for a simple

pendulum,

2. THFE MHDP EQUATIONS

In the Laaranqe representa‘ion the particle paths are

fundamental objects, and partial Aderivatives of the particle paths
are hasic dependent variables. The paths of fluid particles
throuth fixed Fulerian smace are aiven by vector functions

x(t,x%) with initial conditinns x(0,x°%) = x®, the TLaqranae
coordinate. The partial derivatives of the particle paths

i(t'io) produce the kinematical variables, velaocity v and

displacement aqradierts Fo witt components
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for variations of the particle paths “x) that vanish on the
boundaries of the Lagranqge domain of inteqration. The added
notation in Kamiltonr's prirciple (3) defines pO = n(o0,x°) as
the initial density distribution, and e(n,s) as the specific
internal eneraqy of the fluid whi~h is a function of density, «,

and specific entreny, s.

The variations of particle paths must he performed subiect to

the constraints of the following subsidiary conditions for MHD

fﬂi(wl.r: . ),n . C,'.I_‘)ro-) (4

. . L. ‘
ks R by 7/ 4tF ()
Sle,p o= W% - Llhe®, 0%y (£
L‘:IS’,S\ = E(f.f\h) (73

These subsidiary conditions impose resnectivelv conservation o
mass, Faraday's law of maanetic induction, and the eauations of
state for adiabatic convection with the prescribed specific
inteinal encray. In Faradav's law and in the mntion eauation o-r
uses Ampere's law, curl R = dnﬂ/c, and Ohr'e lLaw for the caar !
infinite electrical conductivity, E 4 v x B/e = 0, in order to
eliminate current density, J, and electric field, F, in favor of

maanetic field, B, and particle velocity, v,

Faraday's Law implies preservation of the diveraence caeat jor

div B = 0, which thius may be reaarded as an initial condition,

3. FACTORIZATION ANSATZ

By inspection of the suisidiary coenditions ftor MHD one no e
that time dependence factorizes in all of the variabhles, provide!

the displacement qradient is a function of time only,



» (8)
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Once factorizea, ideal MHD motion reduces to a dynamical system
for the nine components of Fis(t). Hamilton's principle then
acquires the matrix form
. p Vo . .o o _‘r{_FCOFT -
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Dyson's cauations for the spinninag gas cload,



4., MATHEMATICAL REMARKS

Before discussion of the motion of the fluid in detail, let
us remark briefly on a mathematical aspect of the factorization
Ansatz. The particle trajectories ﬁ(trﬁo) arise from a smooth
one-to-one mapping q; that depends on time.

T LS x4, %)= 3{'&0) (12

-

A smooth, one-to-one mapping whose inverse is also smooth is
called a Aiifeormorphism, and such diffeomorphisms form a lic

aroup under functional compnsition.

The fluid velocity alona each particle path is related to the

curve of mappinas ay in the diffeomorphism qroup hy

. .

o { L - = L o] _ y / o H
SR e g N X0 - st A ) (1)
or eauivalently
. -\
Pty =oa 4 [ (1)

Thus, the tluid velocity field along the particle traiectories i-
determined from the lLie alaebra nf voector fields acsociated with

the Adif feomorphism aroup.

Likewise, the displacement aradient in identified with
dq, qzl(l)' the Jacnbian of the map q,. When this Jacobian
is a function of onlv time, thr particle paths become linear

functions of the initial coordinates



where the time dependent matrix Fjﬁ(t) represents a general

linear transformation of Cartesian coordinates, i.e., F(t) ¢
GL(3,R). Thus, the diffeomorphism group for fluids specializes to
the Lie agroup GL(3,R) when the .Jacobian of the evclution map
depends only on time,

5. DYNAMICAL DESCRIPTION TN THRFF DTMFNSTONS

After the factorization Ansatz, the velocity alonaq particle

paths is aiven bv

] | o= i ,
2 I A TS D N (1€)
' 7 - — - l} l
or, in terms of lLaaranae coordinates,
.+ »7) = ( > 7
) - \ F t) ‘ (17
p P
Thee maonetic field alen oyvalvees by A Tinear transformation
L - oy ) /e (19)
E' f -~ '- ) - { E . )
4
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wile the specifie entropy 1o conctant along each partice]e

traiectory,

When this time depondernce {or et by, ie sulbstituted into
Hamilton's principle fopr MED, there recolts toc dynamical systen
(11) tor the linear transformations 19 (e Y. Such
tranaformations streteh the initial confiauration of particles,
and rotate the particle confiaguration relative to both Falerian
and Laarange coordinate frames,  Accordinaly the displacemont

aradient Fiq(t) may be decomposed into a matrix produoct



F= R, 1R, (20)

where R; and R, are orthoaonal and D is diaaonal. Fach matrix
depends upon time, and the decomposition F = R} DR, turns out tn
separate the motion into Fulerian rotations (F,), dilations (M),

and Lagranae rotations (R, ), the last of which represent
circulatory motions of the fluid.

Upon substitution of the triple product F(t) = R.DR. into the
dynamical system (11) one ohtains the follnwina separated
eaquations

T = O

}{ - ___‘_ ‘ v e FT’:

' deti - 7 - - o
s z

D F Jy;\J(y)

where the skew-symmetric matrices J,¥ retresent floid anaglar

momentum and circulation resvectively

k4

J = dn i cosv 2 FEL-FF ‘17 1)

K= "vik-vk O FF = #'F F7F
The bracket in the K cauation is the matrix commutator, and the
potential functinon U(D) in the eaguation for the dilation matrix |
is qiven hy

| S !
UMDY =y (5 (o Law,N) + € etk ) 4 :LJLQ .

with dynamical quantities w;, w,, I, N, S* acfir~d by



=1 . - 2 2 ~ n,

- - ro ‘II
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The quantities .., .+ are anaular velocitirs of rotation an-
circulation respectively. The auantities I.,,N renresent the
anqular momentum and circulation expressed in fixed, FEulerian
coordinates., Finally S* = P;SOP,_--l 1s the maanetic stress tensor
referred to the fixed Fulerian frame,.

The eauations of mntion for J,K, and N first of all exnress
conservation of fluid anaular mementum, J. Tke circulation K is
also conserved provided the maanetic stresa tensor S;ﬁ can be
csimultancously diaaonalized with the initial mass distribution
1°. However when the commutator [F”,FTF! dnes no* vanish, the
circulation experiences a restoarina toroue due to maanetic
ctresses which are developed az the lines of maanetic field wind
arcun? themeelves Jurina fFlaid circulstior, tinally the lact
cauation for the Ailation matrix " exprecces the couplina between
expansion of the fluid and its circulation and rotation., 1In the
expansion patential 1"(P) the centrifuaal, thermodynamical, and
raanet ic forces ecach are repreceented in conservative form, so

eneraetic trade of £ amona themr arec clear,
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6. COMPARISON WITH THFE. _GYROSCOPFE EQUATIONS

The reduced equations for J, K, and D express the fluid
motion in the co-movina lLaaranae frame. When transferred to the
fixed Eulerian frame the resultant eauations for L. = R;! IR, and

N = R,! KR, closely resemble the ayroscope eduations expressed in
body coordinates.

In body coordinates within a gqyroscope that spins with
anqular velccity = in a uniform aravitational field (@ = (0,0,-0)

in fixed coordinates) the eauations of motion for anaular morentum

M = I. take the matrix form
® *( -
Mo« | u\‘AA 2= | 3 , ~ j
(2%)
L} - _{ -
\4* \J)l%_) - ™

where C corresponds to the center-of-mass vector in the bodv, and
the well~known correspondence, e.q., Cis = 14k k between
0(3) and R' has been used.

In order to compare with the avroscope eauations (25) onc
expresses the factorized eauations for J,K in terms of thkeir

fixed-framr» representatives L,N as

L 4 (_L,u).] = O

N [N',u)z_! = djl'v L"*,NZJ (26
i“ + [:,/“’2‘1 = O
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Thus when y; = 0 = D, for MHD fluid circulations with fixed shape
and Fulerian orientation, the ecuation for fluid circulation in
the fixed Fulerian frame N, has an analog with the gyroscope
equation for angular momentum in the moving frame M, under the

following identifications

M = N

ta) L "‘(J\)z

. = (27)
R = 23°/4t D

The analoqg is not exact thouagh, because S*, D are svmmetric

matrices while ao,P are skew-symmetric.

Thus, the equations for MHD motion with linear velocity
profiles separate into two gyroscope equations which are coupled
to each other by magnetic stresses and bv deformations of shape.
When the magnetic and material distributions can be simultaneously
Aiaanonalized, the ananlar motion becomes toraue-free motion on
0(2) x 0(3), which can be further combined into geolesic motion cn
0(4) hy standcrd® methods, sec¢ Holm (1981}, In that case for

motions with fixed shape the equations are completely integrable.

J.o PLRnAR VIOW:  PENDULUM FXAMPLE
When constrained to rotate in a sinale plane the ayroscope
reduces to a simple pendulum. Likewisc the MHD circulation
eauation for N in fixed coordinates reduces to the eauation for a
simple pendulum in the case of plarar MHD flow with a fixed

clliptical houndary.

Consider planar circulation of a MHD fluid within a fixed
ellipse whose principal axes (d:,d.) are aliqned with the
coordinate axes of the (x,.,x;) plane. Becausr of the problem

statement w; = N = D, and the aynamical equation that remains is
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YRR U - A

where the quantities N, w,;, D, S* are given by

. a) |
N = LPw,+ w, Y = el dzs cl;) ./-_, o>

. -1 - o |
w, = h:.R-l(c*) = Q(f.\(-, C>\
d, o \ (29)
L = ( o di
( S, o© ~
ST s Ralesad | o 2y) Ralgen)
with a the angle of rotation wherazby S° is diaqonalized,
(tof,o' S-lnl()
Rl(r) = e coow
(30)
— - o 4 o Vi X Ne 1
tanw = 28,25 /(B V- (€)Y ]
Upon substitution of these definitions into the circulation
equation, the pendulum equation emerqges
T = Acalqpan) ()
with natural frequency-squared A aiven hy
2 ?
‘Iz_a‘ti 5, - %3
L 2 (17)

,A ~ -, .
‘1:'* J; 1‘43

Thus, the gyroscopic analoa for MHD provides an
interpretation of planar circuvlation in terms of pendulum motion.
The particle trajectories for fluid circulation are defined hv
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.= |1 R.‘(q({\‘]

Lo x5 (33)
L .; j

from which it follows that div v = div i = N, For this flow the

densityv of the fluid 1s constant,

and the maanetic field varies
accordina te

e, \ d.
!kz) - “jiz( )

Thus the coordinates of the fluid particles and the maanetic field
conrdirates underao pendulum motion within

o [ s
dy ' simg w2

(¥4

the ellinse,

At the houndarv of the ellipece

= O ({18)
the nrmal components of hoth velocity and mannetic

field vaniceh,
, CL . . R .

proviaded tke 1nitial raanertic field ri ivr linearlvy related to
lLaitranar coordirates by

l Et j = “' I o) )! /" \ L

where b ian a conectant of

proportionality,
impermeahility at the wall

hoth the

Thue the condition nf
is satiafird for this solution, and
velucity and maagnetic field are

diveraencelesns,
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